计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (2): 214-219.DOI: 10.3778/j.issn.1002-8331.1607-0206
吴晓光,谷晓琳,邓志鹏,计科峰
WU Xiaoguang, GU Xiaolin, DENG Zhipeng, JI Kefeng
摘要: 在简要说明基于空时上下文(STC)和基于核函数循环结构(CSK)目标跟踪器的基础上,重点介绍基于颜色特征(CN)的跟踪器,并针对其在目标被遮挡、尺度变化和光照发生变化时易发生跟踪漂移的问题,提出自适应学习速率和自适应高斯核尺度因子两种方法,分别对训练模型的更新和标记进行改进,减少目标模型累积错误,提高跟踪过程准确性。实验中,选取10个视频集,采用3类评价参数对比算法改进前后跟踪效果。实验证明,改进后的算法对遮挡、光照变化和尺度变化等具有较好的鲁棒性,同时将该算法应用在无人机(UAV)视频行人跟踪上,取得了良好效果。