计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (14): 203-208.DOI: 10.3778/j.issn.1002-8331.1701-0213

• 图形图像处理 • 上一篇    下一篇

变分水平集方法在灰度不均图像分割中的应用

韩红伟,冯向东   

  1. 成都理工大学 工程技术学院,四川 乐山 614000
  • 出版日期:2017-07-15 发布日期:2017-08-01

Application of variational level set method to image segmentation with intensity inhomogeneity

HAN Hongwei, FENG Xiangdong   

  1. College of Engineering & Technical, Chengdu University of Technology, Leshan, Sichuan 614000, China
  • Online:2017-07-15 Published:2017-08-01

摘要: 灰度不均严重影响图像分割的准确性,主动轮廓模型广泛应用于图像分割中。为了克服灰度不均对图像分割的影响,提出了一种基于变分水平集的主动轮廓模型。该模型利用了图像局部统计信息的均值和方差,适合对灰度不均图像分割。为了检验算法的性能,利用该算法和经典算法作对比实验,结果表明,不管是对合成图像还是真实图像的分割,都验证了该方法的有效性,而且该方法在曲线演化过程中无需重新初始化水平集函数,在一定程度上减少了计算量。

关键词: 图像分割, 水平集, 灰度不均, 主动轮廓, 偏移场校正, 变分法

Abstract: Intensity inhomogeneity seriously affects the accuracy of image segmentation and active contour model is widely used in image segmentation. In order to overcome the influence of intensity inhomogeneity on image segmentation, this paper puts forward a kind of active contour model based on variational level set. The proposed model uses the mean and variance of the local statistical information of the image, which is suitable for the segmentation of intensity inhomogeneity image. To test the performance of the algorithm, the proposed level set method and the classical algorithm are compared. The results show that the method is validity with both synthetic and real image, and in the process of curve evolution re-initialization is unnecessary, so the method reduces the amount of computation to a certain extent.

Key words: image segmentation, level set method, intensity inhomogeneity, active contour, bias field correction, variational method