计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (13): 141-145.DOI: 10.3778/j.issn.1002-8331.1601-0364

• 模式识别与人工智能 • 上一篇    下一篇

基于群智能的蛋白质耐热温度预测研究

高晓梅1,丁彦蕊2,3   

  1. 1.江南大学 物联网工程学院,江苏 无锡  214122
    2.江南大学 数字媒体学院,江苏 无锡  214122
    3.江南大学 工业生物技术教育部重点实验室,江苏 无锡  214122
  • 出版日期:2017-07-01 发布日期:2017-07-12

Prediction research of protein melting temperature based on swarm intelligence algorithm

GAO Xiaomei1, DING Yanrui2,3   

  1. 1.School of Internet of Things, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China
    3.Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2017-07-01 Published:2017-07-12

摘要: 为直接利用序列和结构信息预测蛋白质耐热温度,提出了基于群智能的蛋白质耐热温度预测方法。基于多元线性回归模型,利用人工蜂群与粒子群混合算法,优化了蛋白质的耐热温度与氨基酸含量的多元线性回归模型的参数,得到蛋白质的耐热温度。此外,通过加入蛋白质的氨基酸网络拓扑属性,提高了蛋白质耐热温度的预测准确性。对耐温蛋白质,网络拓扑属性的加入使得蛋白质耐热温度的预测值偏差和真实值偏差之间的相关系数增加到0.71,平均预测率增加到0.88;耐热蛋白质的相关系数增加到0.75,平均预测率增加到0.91。氨基酸网络拓扑属性的引入为预测蛋白质耐热温度提供了新的视角。

关键词: 蛋白质耐热温度, 群智能算法, 人工蜂群, 粒子群优化, 氨基酸网络, 氨基酸含量

Abstract: In order to predict the protein melting temperature directly from the term of the sequence and structure of the protein, the prediction of protein melting temperature based on swarm intelligence algorithm is proposed. Using the hybrid algorithm that combines artificial bee colony and particle swarm, which optimizes the parameters of multivariate linear regression model, the paper calculates the protein melting temperature based on amino acid content. Additionally, by adding amino acid network topological properties to amino acid content, the prediction accuracy is greatly improved. For mesophilic protein, the correlation coefficient between the predicted value deviation and the real value deviation increases to 0.71, the average of prediction accuracy increases to 0.88 compared with the result using amino acid content; and the correlation coefficient increases to 0.75, the average of prediction accuracy increases to 0.91 of thermophilic protein. Amino acid network topological properties offer an innovation perspective for the prediction of protein melting temperature.

Key words: protein melting temperature, swarm intelligence algorithm, artificial bee colony, particle swarm optimization, amino acid network, amino acid content