计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (11): 211-216.DOI: 10.3778/j.issn.1002-8331.1609-0397
李红岩
LI Hongyan
摘要: 数据驱动的有监督联合分割可以通过先验知识的学习,达到更精确的分割与标注要求。然而,目前的有监督分割方法大多需要耗费大量的训练时间,不利于大规模数据集的扩展。为了提高学习效率,提出一种基于极限学习机同时对面片和网格边进行训练的快速的三维形状分割和标注方法。进而通过图割优化进行分割边缘的平滑和优化,得到最终的标注结果。实验结果表明,在三维形状的分割和标注过程中,该方法学习快速,且可以达到较高的分割精度和视觉效果。