计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (10): 85-89.DOI: 10.3778/j.issn.1002-8331.1603-0001

• 大数据与云计算 • 上一篇    下一篇

基于小世界模型的高维数据查询算法

段  群1,赵阿妮2,聂  维1   

  1. 1.咸阳师范学院 图形图像处理研究所,陕西 咸阳 712000
    2.宝鸡文理学院,陕西 宝鸡 721000
  • 出版日期:2017-05-15 发布日期:2017-05-31

High-dimensional data query algorithm based on small-world model

DUAN Qun1, ZHAO A’ni2, NIE Wei1   

  1. 1.Institute of Graphics and Image Processing, Xianyang Normal University, Xianyang, Shaanxi 712000, China
    2.Baoji University of Arts and Sciences, Baoji, Shaanxi 721000, China
  • Online:2017-05-15 Published:2017-05-31

摘要: 提出了一种从海量高维数据中进行高效查询的算法,该算法基于小世界网络模型,并采用网络节点表示高维数据的特征向量。算法主要包含两个部分,基于K-Means的索引生成算法和随机逼近查询算法,两个算法均给出了具体的操作步骤。算法经大量实验仿真,得出通过合理设置小世界网络节点的近邻节点数量以及最大查询路径和最大迭代次数等参数,算法可以满足不同精度的用户查询请求。实验结果表明,实现的算法在高维度海量数据查询中具有良好的检索效果。

关键词: 高维数据, 小世界模型, 大数据, 范围查询

Abstract: Based on small-world model, express the high-dimensional feature vector as the network nodes, and then design the high-dimensional index generation algorithm based on K-Means technology and the random approximate neighbor query algorithm. With the appropriate chosen the number of neighbor nodes, the maximum length of query paths and the maximum iterations, the proposed algorithm can meet various query with different precision demands. Experiment demonstrates the algorithm can achieve effective index performance with mass high-dimensional data vectors.

Key words: high-dimensional data, small-world model, big data, range query