计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (7): 122-126.
任晓奎,缴文斌,周 丹
REN Xiaokui, JIAO Wenbin, ZHOU Dan
摘要: 针对传统朴素贝叶斯算法对高维复杂的入侵行为检测效率低下的状况,提出一种基于粒子群的加权朴素贝叶斯入侵检测模型。模型首先用粗糙集理论对样本属性特征集进行约简,再利用改进的粒子群算法优化加权朴素贝叶斯算法的属性权值,获得属性权值的最优解,用获得的最优解构造贝叶斯分类器完成检测。其中,改进的粒子群是采用权衡因子方法更新其速度和位置公式,避免产生局部最优。两种算法的结合,既能解决传统朴素贝叶斯算法的特征项冗余问题,同时也可以优化特征项间的强独立性问题。通过实验证实了该模型的实效性,提高了检测率。