计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (4): 250-254.
杨 政1, 姚 尧2, 金小明3
YANG Zheng1, YAO Yao2, JIN Xiaoming3
摘要: 针对超短期负荷预测周期短,要求预测速度快的特点,构建了基于稳健回归和回声状态网络的超短期负荷预测方法。回声状态网络作为一种递归神经网络,其隐含层为一个储备池,并且通过线性回归训练网络,从而具有映射复杂动态系统的能力和训练快速的特点,能较好地满足超短期负荷预测的要求。考虑到异常负荷数据的影响,将稳健回归运用于网络训练阶段,以削弱异常值的影响,从而提升预测的精度。通过算例验证了所提方法的可行性和有效性。