计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (4): 168-173.
姚明煌,骆炎民
YAO Minghuang, LUO Yanmin
摘要: 对于遥感图像训练样本获取难的问题,引入适用于小样本分类的随机森林算法。为了随机森林能在小样本情况下有更优的分类效果和更高的稳定性,在决策树基础上提出了一种更加随机的特征组合的方法,降低了决策树之间的相关性,从而降低了森林的泛化误差;引入人工免疫算法来对改进后的随机森林进行压缩优化,很好地权衡了森林规模和分类稳定性、精度的矛盾。通过UCI数据集的实验表明,改进的随机森林的有效性及其优化的模型的可行性,优化后森林的规模降低了,且有更高的分类精度。在遥感图像上与传统的方法进行了对比。