计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (24): 50-56.
苏宏升,殷凯乐
SU Hongsheng, YIN Kaile
摘要: 针对现有的人工蜂群算法(Artificial Bee Colony,ABC)在进化速度和求解质量方面难以兼顾的缺点,提出一种基于Nelder-mead单纯形法的改进人工蜂群算法(Nelder-Mead Simplex Method based Improved Artificial Bee Colony,NMSM-IABC)。在迭代过程中,该算法周期性地将单纯形算子得到的最优个体迁移到人工蜂群算法的蜂群中,或将蜂群中的最优蜜源信息迁移到Nelder-mead单纯形算法中。旨在ABC借助NM-SM提高局部搜索能力,NM-SM借助ABC跳出局部最优点,达到两者协同搜索。再者,为了进一步加快收敛速度,在ABC中采用一种改进的跟随蜂搜索策略,并对产生侦察蜂的关键参数进行灵敏度分析。最后,通过6个典型的多维测试函数对算法进行仿真测试。结果表明:提出的算法有效地避免了陷入局部最优,提高全局搜索能力和搜索精度,有较快的收敛速度,是一种较好的协同搜索算法。