计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (23): 60-62.
• 理论与研发 • 上一篇 下一篇
郑亚敏,魏美华
出版日期:
发布日期:
ZHENG Yamin, WEI Meihua
Online:
Published:
摘要: 针对一维常系数对流扩散模型方程,讨论了当含有第一类边界条件时,局部间断有限元方法(LDG方法)的稳定性。利用有限元理论基本分析技巧,证明了当边界条件为第一类的边界条件时,LDG方法为稳定的,并利用数值算例证明理论分析的正确性。
关键词: 局部间断Galerkin有限元(LDG)方法, 第一类边界条件, 稳定性, 对流扩散方程
Abstract: A Local Discontinuous Galerkin finite element method(LDG method) is presented for one-dimensional convection diffusion equations with first boundary conditions with constant coefficients. It is proved that the LDG method is stable for convection diffusion equations with first boundary conditions with constant coefficients. Numerical examples verify the correctness of the theoretical analysis.
Key words: Local Discontinuous Galerkin finite element(LDG) method;first boundary conditions, stability, convection diffusion equations
郑亚敏,魏美华. 第一类边界对流扩散方程LDG方法的稳定性[J]. 计算机工程与应用, 2016, 52(23): 60-62.
ZHENG Yamin, WEI Meihua. Stability of LDG method for convection diffusion equations with first boundary conditions[J]. Computer Engineering and Applications, 2016, 52(23): 60-62.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2016/V52/I23/60