计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (22): 26-32.
张 晴1,林家骏2,戴 蒙1
ZHANG Qing1, LIN Jiajun2, DAI Meng1
摘要: 针对现有基于图的流行排序的显著目标检测研究算法对于背景先验假设过于理想导致其在复杂背景图像检测中效果较不佳的问题,提出一种基于仿射传播聚类和流行排序的改进算法。首先根据位于边界的超像素集的颜色对比度进行背景提取;然后在背景估计和前景估计的显著性计算中利用仿射传播算法将提取的背景按颜色自适应聚类,根据各聚类簇分别采用经典的流行排序算法计算显著性,最后合并排序结果并融合多尺度显著值得到最终的显著图。在常用的公开的ASD、ECSSD、DUTOMRON和SED2数据集上与九种流行算法就准确率、召回率、F-measure、PR曲线和AUC值等指标和直观的视觉检测效果进行了比较,证明了所提算法的有效性。