计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (22): 169-173.
刘桂红1,李 丹2,孙劲光1
LIU Guihong1, LI Dan2, SUN Jinguang1
摘要: 在基于Fisher准则的字典学习算法中,初始字典的选取和目标函数的构建,严重影响字典学习的效果。为了减少初始字典的影响,提高算法的表达和判别能力。提出了一种结合Gabor特征和自适应加权Fisher准则的人脸识别算法。该算法首先采用Gabor滤波器提取人脸特征,将提取到的Gabor人脸特征作为人脸训练集;通过添加遗忘函数和根据样本间的距离对训练样本自适应加权,改进Fisher准则字典学习算法;利用测试样本编码系数的误差进行识别。在人脸库上的实验表明,算法不仅能很好地提取图像的特征信息,而且可以有效地提高人脸识别率。