计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (21): 36-41.

• 热点与综述 • 上一篇    下一篇

基于区域对比度和背景先验的显著目标检测

张  晴1,林家骏2,石艳娇1   

  1. 1.上海应用技术大学 计算机科学与信息工程学院,上海 201418
    2.华东理工大学 自动化研究所,上海 200237
  • 出版日期:2016-11-01 发布日期:2016-11-17

Salient object detection based upon region contrast and background prior

ZHANG Qing1, LIN Jiajun2, SHI Yanjiao1   

  1. 1.School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China
    2.Research Institute of Automation, East China University of Science and Technology, Shanghai 200237, China
  • Online:2016-11-01 Published:2016-11-17

摘要: 针对现有算法对复杂背景的图像检测效果较差的问题,提出融合区域对比度和背景先验的显著目标检测算法。首先利用超像素分割将图像分割成感知均匀的图像块,然后根据区域对比度计算全局对比度特征和空间聚集度特征,再根据背景先验得到背景集,计算图像块与背景集间的相似性特征,接着对三个特征显著图进行融合计算,最后根据每个像素与周围超像素的颜色和距离对比度得到每个像素的显著值。实验结果表明,所提算法能较均匀高亮整个目标且有效抑制无关背景信息。

关键词: 显著目标检测, 显著性, 背景先验, 区域对比度

Abstract: Existing algorithms are less effective in detecting images with complex background. A novel salient detection algorithm is proposed by using region contrast and background prior. Firstly, the image is segmented into perceptually homogeneous patches. Then region contrast is employed to obtain global contrast and spatial distribution maps. And then, background prior is adopted to compute the similarity between the patches and background. Finally three feature maps are fused into a saliency map based on superpixels. To better exploit each pixel’s color and position information, the fused saliency map is refined. Experiments on two popular benchmark datasets demonstrate that the proposed approach can uniformly highlight the salient object and effectively suppress the background.

Key words: salient object detection, saliency, background prior, region contrast