摘要: 针对标准粒子群优化(PSO)算法早熟收敛及易陷入局部极值的缺点,提出一种基于环形邻域的混沌粒子群优化算法RCPSO,并将其应用于求解数据聚类问题,而且通过在4个数据集上进行仿真实验验证了算法的有效性。实验表明,当邻域大小为整个种群规模的1/3时,基于静态邻域和基于随机邻域的算法在4个数据集上的整体聚类效果均达到最好。RCPSO算法利用适当规模的环形邻域提高了粒子群的全局寻优能力,并利用混沌因子增强了粒子收敛过程中种群的多样性,从而避免算法的早熟收敛。另外,与K-means、PSO、K-PSO及CPSO算法的实验结果进行比较表明,RCPSO算法在错误率方面表现得更好,因此该算法为聚类问题提供了一种切实有效的解决方法。