计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (2): 239-243.

• 工程与应用 • 上一篇    下一篇

基于PSO-SVR动态模型的车辆排队长度预测

孙文兵1,彭跃辉2   

  1. 1.邵阳学院 理学与信息科学系,湖南 邵阳 422004
    2.邵阳学院 信息工程系,湖南 邵阳 422004
  • 出版日期:2016-01-15 发布日期:2016-01-28

Vehicle queue length prediction based on PSO-SVR dynamic model

SUN Wenbing1, PENG Yuehui2   

  1. 1.Department of Mathematics and Information Science, Shaoyang University, Shaoyang, Hunan 422004, China
    2.Department of Information Engineering, Shaoyang University, Shaoyang, Hunan 422004, China
  • Online:2016-01-15 Published:2016-01-28

摘要: 针对突发事件下城市道路车辆排队系统的特点,从时空角度综合考虑车辆排队系统的影响因素,建立支持向量回归(SVR)动态模型对车辆排队长度进行预测。考虑到参数选择对模型性能影响的敏感性,提出了以k折交叉验证(k-CV)均方误差平均值为适应度的粒子群优化(PSO)方法并对SVR模型参数进行寻优。用提出的PSO-SVR模型与K-CV和遗传算法(GA)优化的SVR模型以及BP网络预测模型对比,实验结果表明,该模型具有较高的预测精度和泛化能力,适用于车辆排队长度的预测。

关键词: 支持向量回归, 粒子群算法, 参数优化, 车辆排队长度, 预测

Abstract: According to the characteristics of city road vehicle queuing system under emergency, considering the affect factors from the view of space-time, it establishes Support Vector Regression (SVR) model to predict vehicle queue length. Considering the sensitivity of parameters effecting on model performance, Particle Swarm Optimization (PSO) algorithm is proposed to select SVR parameters. Furthermore, the k-fold cross validation (k-CV) mean square error averaged is used as the fitness of PSO. The proposed PSO-SVR model compares with k-CV SVR model, GA-SVR model and BP network. The test results show that PSO-SVR model has higher prediction accuracy and generalization ability, and the model is effective to predict vehicle queue length.

Key words: support vector regression, particle swarm algorithm, parameter optimization, vehicle queue length, prediction