摘要: GrabCut算法用户交互量少且分割精度高,但它迭代使用GraphCuts的求解模式使得在处理高分辨率图像时,耗时巨大。提出了一种快速GrabCut算法,在高斯混合模型参数估计过程中,通过SLIC算法构建精简的GraphCuts模型以实现加速。通过SLIC算法将原始图像快速地预分割成具有确定边界且区域内相似度高的超像素图,并以此构建精简的网络图。以块内的RGB均值描述超像素特征进行高斯混合模型参数估计。为了提高分割精度,使用得到的GMM参数对原始图像进行分割。实验结果证明了该算法在时效和精度上都有很好的性能。