计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (16): 162-166.

• 模式识别与人工智能 • 上一篇    下一篇

基于背部轮廓相关系数算法的淡水鱼种类识别研究

涂  兵1,2,3,王锦萍1,3,王思成1,3,周  幸1,3,戴  平1,3   

  1. 1.湖南理工学院 信息与通信工程学院,湖南 岳阳 414006
    2.湖南理工学院 复杂系统优化与控制湖南省普通高等学校重点实验室,湖南 岳阳 414006
    3.湖南理工学院 IIP创新实验室,湖南 岳阳 414006
  • 出版日期:2016-08-15 发布日期:2016-08-12

Research on identification of freshwater fish species based on fish back contour correlation coefficient

TU Bing1,2,3, WANG Jinping1,3, WANG Sicheng1,3, ZHOU Xing1,3, DAI Ping1,3   

  1. 1.School of Information & Communication Engineering, Hunan Institute of Science & Technology, Yueyang, Hunan 414006, China
    2.Key Laboratory of Optimization and Control for Complex Systems of Hunan Province, Yueyang, Hunan 414006, China
    3.Laboratory of Intelligent-Image Information Processing, Hunan Institute of Science &Technology, Yueyang, Hunan 414006, China
  • Online:2016-08-15 Published:2016-08-12

摘要: 针对淡水鱼种类的自动识别问题,利用机器视觉技术,提出一种基于鱼体背部轮廓相关系数算法的鱼体种类识别方法。首先根据采集的鲫、草鱼、鳊、鲤四种淡水鱼图片,将图像处理方法应用到鱼体背部轮廓的提取上,并采用最小二乘算法对鱼体背部轮廓进行曲线拟合,建立这四种淡水鱼的背部轮廓数学模型;接着对要识别的鱼体,通过机器视觉技术获得鱼体轮廓,并计算提取的鱼体轮廓与建立的四种鱼背部轮廓数学模型的相关系数值,达到对鱼体种类自动识别目地;最后采用提出的方法对市场随机选取的各60条活鱼进行了测试,测试结果表明,该算法简单,识别准确率较高,能够为淡水鱼种类识别方法提供新的思路,提高水产养殖的自动化水平。

关键词: 机器视觉, 背部轮廓, 最小二乘算法, 相关系数

Abstract: In this paper, aiming at the problem of the automatic identification of freshwater fish species, using the machine vision technology to put forward a kind of method for the fish species identification, which based on the correlation coefficient algorithm of the fish back contour. Firstly, according to the four kinds of freshwater fish pictures of crucian, grass carp, bream and cyprinoid, the image processing method is applied to the extraction of the fish back contour. And the least square algorithm is used for fitting a curve of the fish body back contour to establish the mathematical model of the back contour of four kinds of freshwater fish. Then, in order to achieve the automatic identification of fish species, for the fish body to be recognized, using the machine vision technology to obtain the fish body contour, and calculating the correlation coefficient value of the fish contour and the mathematical model of the back contour of four kinds of freshwater fish. Finally, the 60 fishes alive are randomly selected from the market have been tested by the proposed method, which shows that the algorithm is simple and has higher recognition accuracy. It can provide new ideas for the identification of the freshwater fish species and improve the automation level of aquaculture.

Key words: machine vision, the contour of fish body back, least square algorithm, correlation coefficient