计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (15): 88-92.

• 大数据与云计算 • 上一篇    下一篇

基于线性孪生支持向量机的特征选择方法

李鑫滨,邱建坤,韩  松   

  1. 燕山大学 工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
  • 出版日期:2016-08-01 发布日期:2016-08-12

Feature selection method based on linear Twin Support Vector Machine

LI Xinbin, QIU Jiankun, HAN Song   

  1. Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
  • Online:2016-08-01 Published:2016-08-12

摘要: 提出了一种基于线性孪生支持向量机(TWSVM)的嵌入式特征选择方法。该方法在构造分类器的过程中,通过在TWSVM原有优化模型中引入一个惩罚项,来实现特征选择。在求解过程中,采用交替迭代优化方法将该模型求解问题分解成两个子问题来处理,即标准TWSVM优化问题和关于特征权重的非线性约束优化问题,并分别对子问题进行有效求解。在UCI数据集上对算法进行了仿真分析和比较,仿真结果验证了算法的有效性。

关键词: 特征选择, 孪生支持向量机, L1范数, 嵌入式方法

Abstract: A new embedded feature selection method based on linear Twin Support Vector Machine(TWSVM) is proposed. It selects features during classifier construction by introducing a penalty term in the primal formulation of Twin Support Vector Machine. In the solving process, it utilizes alternating iterative optimization method to decompose the problem of solving the model into two sub-problems, namely the standard TWSVM optimization problem and the nonlinear constrained optimization problem about feature weight, and effectively solves the sub-problems respectively. The feature selection method is analyzed and compared on UCI datasets. Simulation results verify the proposed method is effective.

Key words: feature selection, Twin Support Vector Machine(TWSVM), L1-norm, embedded methods