摘要: 针对传统的基于Kruppa方程摄像机自标定算法的欠鲁棒性,首次提出将鲁棒的张量投票算法用于摄像机自标定方法中。利用基于尺度不变的SIFT算法查找并匹配出每对图像的特征点,其中待匹配图像由摄像机对同一场景从三个不同角度位置拍摄,对图像张量投票后按棒张量特征值降序排序,由此筛选得到具有鲁棒性边缘特征的前八对特征点,利用八点算法求解相应的基础矩阵和极点,根据Kruppa方程和三维重建(SFM)算法求得摄像机参数矩阵。实验结果证明,该方法具有较高标定精度,并通过加入高斯噪声的仿真实验证明该算法是一种鲁棒的摄像机自标定方法。