计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (15): 1-7.

• 热点与综述 • 上一篇    下一篇

高效能云计算虚拟机优化部署策略

张小庆   

  1. 1.国云科技股份有限公司,广东 东莞 523808
    2.广东电子工业研究院,广东 东莞 523808
    3.中科院云计算中心,广东 东莞 523808
    4.武汉轻工大学 数学与计算机学院,武汉 430023
  • 出版日期:2016-08-01 发布日期:2016-08-12

High productive virtual machine optimal placement strategy in cloud computing

ZHANG Xiaoqing   

  1. 1.G-CLOUD Technology Co., LTD, Dongguan, Guangdong 523808, China
    2.Guangdong Electronics Industry Institute, Dongguan, Guangdong 523808, China
    3.Cloud Computing Center, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
    4.School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
  • Online:2016-08-01 Published:2016-08-12

摘要: 针对云计算应用负载需求的动态变化特性,提出了一种自适应虚拟机优化部署策略。算法通过基于强局部加权回归的热点发现机制,可以根据负载所体现的资源占用历史信息动态决策主机的超载时机;通过迁移周期最优算法MPM和迁移量最少算法MNM进行超载主机的迁移虚拟机选择;提出基于功耗感知的PBFDH算法对迁移虚拟机再次优化部署。实验结果表明,算法不仅可以降低能耗,还可以降低SLA违例率。

关键词: 云计算, 能效, 服务等级协议, 虚拟机部署, 强局部加权回归

Abstract: Aiming at dynamical changes of application workload requirements, a self-adaptive virtual machine optimal placement strategy is presented. First, through the hotspot detection based on robust local weight regression, this algorithm can decide the overload time of hosts dynamically according to the historical resource occupation information of application workload. Second, through the optimal migration period MPM and minimal migration number MNM, it can choose migrated VMs on overloaded hosts. Finally, the bin-packing algorithm PBFDH based on power consumption aware is used to deploy VMs again. Experimental results show that it not only can reduce energy consumption, but decrease SLA violation.

Key words: cloud computing, energy-efficiency, Service Level Agreement(SLA), virtual machine placement, robust local weighted regression