计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (14): 67-71.

• 大数据与云计算 • 上一篇    下一篇

基于粗糙集的物流资源分类方法研究

王  旭,谢沐男,邓  蕾   

  1. 1.重庆大学 机械工程学院,重庆 400030
    2.重庆大学 现代物流重庆市重点实验室,重庆 400030
  • 出版日期:2016-07-15 发布日期:2016-07-18

Research on classification method of logistics resources based on rough set

WANG Xu, XIE Munan, DENG Lei   

  1. 1.School of Mechanical Engineering, Chongqing University, Chongqing 400030, China
    2.Chongqing Key Laboratory of Logistics, Chongqing University, Chongqing 400030, China
  • Online:2016-07-15 Published:2016-07-18

摘要: 针对目前物流行业在资源优化配置以及组织调度等环节中出现的匹配精度低、调用效率差等现实问题,将物流资源分类标准作为切入点,以行业内现有资源分类体系为基础,结合实际样本数据,提出基于粗糙集的物流资源分类方法。首先以粗糙集理论为指导,对物流资源属性进行约简,然后从数据挖掘的角度进行基于属性重要度的资源分类,最终分析得出资源分类规则,以此为物流资源整合提供理论依据。通过实例分析,证明该分类方法的有效性。

关键词: 物流资源, 数据挖掘, 粗糙集, 分类方法, 属性约简

Abstract: Considering the practical problems of poor invoking efficiency and low matching accuracy in the resources optimal allocation and organization scheduling links of the logistics industry, taking classification standard of logistics resources as an entry point, based on the existing system of the industry resources classification and in combination with the actual sample data, a classification method of logistics resources based on rough set is developed. Firstly, guided by the rough set theory, the attribution of logistics resources is reduced. The resource is classified from the angle of data mining based on the attribute significance. Finally, the resource classification rules providing the theory basis of logistics resources integration is formatted. A case is given to demonstrate the effectiveness of the classification method.

Key words: logistics resources, data mining, rough set, classification method, attribute reduction