计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (6): 171-175.

• 图形图像处理 • 上一篇    下一篇

改进CV模型图像分割的Split-Bregman方法

龚  劬,王迎龙,马家军   

  1. 重庆大学 数学与统计学院,重庆 401331
  • 出版日期:2015-03-15 发布日期:2015-03-13

Split-Bregman method for image segmentation of CV model

GONG Qu, WANG Yinglong, MA Jiajun   

  1. College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
  • Online:2015-03-15 Published:2015-03-13

摘要: 水平集方法中的Chan-Vese模型(简称CV模型)对灰度不均匀及边界对比度低的图像的分割效果不够精确,计算效率也不是很高。针对灰度不均匀引入偏差场来修正CV模型中的区域平均灰度并引入核函数来加权能量泛函。针对计算效率低下的问题,在上述基础上得出其全局凸分割模型(Global Convex Segmentation,GCS),用Split-Bregman迭代求解该模型。实验结果表明:改进后的模型提高了分割精确度和计算效率。

关键词: CV模型, Split-Bregman, 全局凸分割模型(GCS)

Abstract: The segmentation of the images which have low contrast edges and intensity inhomogeneities is not very accurate or efficient when using level set method of Chan-Vese model(short for CV model). For intensity inhomogeneity, a bias field will be introduced to revise the local average intensity, also a kernel function will be introduced in the energy functional. In order to improve the efficiency, a Global Convex Segmentation(GCS) model will be conducted based on the above model. Split-Bregman iteration will be applied in the model. The experiment demonstrates that the advanced model is more accurate and efficient.

Key words: Chan-Vese(CV) model, Split-Bregman, Global Convex Segmentation(GCS) model