计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (6): 1-5.

• 博士论坛 • 上一篇    下一篇

遗传算法函数寻优性能影响因素分析——基于正交试验的方法

李书全,吴秀宇   

  1. 天津财经大学 商学院 管理科学与工程系,天津 300222
  • 出版日期:2015-03-15 发布日期:2015-03-13

Influencing factors of genetic algorithm performance on function optimization based on orthogonal experiment

LI Shuquan, WU Xiuyu   

  1. Department of Management Science and Engineering, School of Business, Tianjin University of Finance and Economics, Tianjin 300222, China
  • Online:2015-03-15 Published:2015-03-13

摘要: 遗传算法在函数寻优领域得到了广泛应用,选取合适的参数对提高遗传算法寻优性能至关重要。以四个经典函数为例,基于正交试验原理分析了遗传算法五个参数对其寻优时间和迭代次数的影响。结果表明:对寻优搜索时间影响最大的参数为变异概率,其次为种群大小,交叉算子的选择、交叉概率和编码长度影响相对较小;对寻优迭代次数影响较大的三个参数为变异概率、种群大小和编码长度,而交叉概率和交叉算子的选择影响相对较小。分析了使遗传算法性能最优时参数组合的原则。

关键词: 遗传算法, 正交试验, 寻优性能, 影响因素

Abstract: Genetic algorithm is widely applied to function optimization. It’s very important to  select the appropriate parameters for the performance of function optimization. This paper takes four classical functions as examples, and analyzes five parameters’ impacts on genetic algorithm performance on function optimization based on orthogonal test. The results show that:the greatest influencing factor on searching time is mutation probability, the second is population size, the other three crossover operator, crossover probability and encoding length are less; the three factors that influence iteration times are mutation probability, population size and encoding length, and the influence of crossover probability and crossover operator are less. This paper analyzes the principles of parameters combination for genetic algorithm optimal performance.

Key words: genetic algorithm, orthogonal experiment, optimization performance, influencing factors