计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (24): 8-11.

• 博士论坛 • 上一篇    下一篇

格值逻辑命题逻辑(Ln×L2)P(X)中广义文字的α-归结性

张家锋1,曹发生2   

  1. 1.贵州民族大学 理学院,贵阳 550025
    2.贵州工程应用技术学院 理学院,贵州 毕节 551700
  • 出版日期:2015-12-15 发布日期:2015-12-30

α-resolvability of generalized literals in lattice-valued propositional logic(Ln×L2)P(X) .

ZHANG Jiafeng1, CAO Fasheng2   

  1. 1.School of Science, Guizhou Minzu University, Guiyang 550025, China
    2.School of Science, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China
  • Online:2015-12-15 Published:2015-12-30

摘要: 由于格值逻辑中广义文字结构的复杂性,这必然增加判断两个广义文字是否为α-归结对的难度。根据真值域[Ln×L2]的结构特性和归结水平[α]的特点,研究了真值域为一类格蕴涵代数[Ln×L2]的格值命题逻辑系统[(Ln×L2)P(X)]中0-IESF与其他广义文字之间的α-归结性,得到了两个广义文字可进行α-归结的条件。

关键词: 自动推理, 归结域, 格值逻辑, 格蕴涵代数

Abstract: Because of the complexity of generalized literals structure in lattice-valued logic, it leads to difficult to judge two generalized literals whether form resolution pair or not. According to particular structure of truth valued range[ Ln×L2] and the characteristic of resolution level α, the resolvability of between 0-IESF and other generalized literals in lattice-valued propositional logic system[ (Ln×L2)P(X) ]based on one class of lattice implication algebras[ Ln×L2], and the determination conditions on that two generalized literals can form resolution pair.

Key words: automated reasoning, resolution fields, lattice-valued logic, lattice implication algebras