计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (24): 244-248.

• 工程与应用 • 上一篇    下一篇

基于SARSA(λ)的实时交通信号控制模型

戈  军1,周莲英2   

  1. 1.宿迁学院 计算机科学系,江苏 宿迁 223800
    2.江苏大学 计算机科学与通信工程学院,江苏 镇江 212013
  • 出版日期:2015-12-15 发布日期:2015-12-30

Real-time traffic signal control model based on SARSA(λ)

GE Jun1, ZHOU Lianying2   

  1. 1.Department of Computer Science, Suqian College, Suqian, Jiangsu 223800, China
    2.College of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • Online:2015-12-15 Published:2015-12-30

摘要: 针对现有交通灯控制器缺乏过去经验的学习能力,导致其无法适应实际交通环境的动态变化,提出了一种基于SARSA(λ)的实时交通信号控制模型,并给出了一种交通信号优化模型及算法,该模型采用强化学习算法,得出交通控制的最优调度策略。仿真实验结果表明,所提模型优于现有交通控制模型,能更好地促进实时动态交通控制实现。

关键词: 状态-动作-回报-状态-动作, 实时交通信号控制, 强化学习, 交通评价指标, 时序差分学习

Abstract: In view of the existing traffic light controller lack of the past experience of learning ability, unable to adapt to the dynamic change of the actual traffic environment, this paper proposes a SARSA(λ)-based control model for real-time traffic signal, and gives a traffic signal optimization model and algorithm. The model uses reinforcement learning algorithm to obtain the optimized scheduling strategy for traffic control. Simulation results show that the proposed model is superior to the existing traffic control model, and can improve the real-time dynamic traffic control to achieve better.

Key words: State-Action-Reward-State-Action(SARSA), real-time traffic signal control, reinforcement learning, traffic evaluation indicators, temporal difference learning