计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (24): 18-26.

• 博士论坛 • 上一篇    下一篇

一类两种群竞争趋化模型解的有界性

高海燕1,伏升茂2   

  1. 1.兰州财经大学 统计学院,兰州 730020
    2.西北师范大学 数学与统计学院,兰州 730070
  • 出版日期:2015-12-15 发布日期:2015-12-30

Boundedness of solutions in two-species competitive chemotaxis model

GAO Haiyan1, FU Shengmao2   

  1. 1.School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, China
    2.College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Online:2015-12-15 Published:2015-12-30

摘要: 研究了一类完全抛物型的含两竞争种群和一趋化物的Keller-Segel模型的非负解。在一些适当条件下,对充分光滑的初始条件,利用Moser型迭代可证得该模型存在唯一整体古典解,且有界。

关键词: Keller-Segel模型, 竞争, 整体存在性, 有界性

Abstract: This paper deals with nonnegative solutions of a two competitive species and one chemoattractant fully parabolic Keller-Segel model. Under some suitable conditions, for all sufficiently smooth initial data, it is proven that this model possesses boundedness, global in time existence and uniqueness of classical solution,by means of a Moser-type iteration.

Key words: Keller-Segel model, competition, global existence, boundedness