计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (23): 218-225.
李祥飞1,张再生2,刘珊珊3
LI Xiangfei1, ZHANG Zaisheng2, LIU Shanshan3
摘要: 针对一种新型智能进化算法——布谷鸟搜索算法提出了基于多群体并行搜索和自适应步长的改进方法。将改进后的方法引入支持向量机参数优化中,提出了基于改进后布谷鸟搜索算法优化支持向量机模型参数的方法并将其应用于上市公司财务风险评估中,有效提高了财务风险模型的分类性能。仿真结果发现:改进的布谷鸟搜索算法用于优化支持向量机参数不仅有效提高了上市公司季度财务数据分类预测精度,而且相较改进之前的布谷鸟搜索算法、遗传算法和粒子群算法具有更快的收敛速度和稳定性。