计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (23): 179-183.

• 图形图像处理 • 上一篇    下一篇

基于核典型相关分析的多特征组合人脸识别

韩越祥1,李赵国1,郑  哲2,张尕琳3   

  1. 1.浙江工业职业技术学院,浙江 绍兴 312000
    2.宁波职业技术学院,浙江 宁波 315100
    3.高等教育出版社上海分社,上海 200081
  • 出版日期:2015-12-01 发布日期:2015-12-14

Face recognition based on hybrid features fusion by kernel canonical correlation analysis

HAN Yuexiang1, LI Zhaoguo1, ZHENG Zhe2, ZHANG Galin3   

  1. 1.Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2.Ningbo Polytechnic, Ningbo, Zhejiang 315100, China
    3.Higher Education Press Shanghai Branch, Shanghai 200081, China
  • Online:2015-12-01 Published:2015-12-14

摘要: 为了提高人脸的识别率,利用多特征和分类器之间的互补优势,提出一种基于核典型相关分析的多特征组合人脸识别方法(KCCA-MF)。提取人脸图像的LBP特征和Gabor特征,采用核典型相关分析算法对两种特征进行融合,以消除冗余特征,采用K近邻算法和支持向量机建立组合人脸分类器,并采用3个经典人脸库进行仿真分析。结果表明,相对于其他人脸识别方法,KCCA-MF提高了人脸识别的识别准确率和效率,可以满足人脸识别的实时性要求。

关键词: 人脸识别, Gabor特征, 局部二值模式(LBP)特征, 核典型相关分析

Abstract: In order to improve the recognition rate of face image, a novel face recognition method (KCCA-MF) is proposed based on hybrid features fusion by kernel canonical correlation analysis. Gabor and LBP features of face images are extracted, and then the kernel correlation analysis algorithm is used to fuse two kinds of features and eliminate redundant features, the combination of face image classifier is established based on K nearest neighbor and support vector machine, and the simulation analysis is carried on three classic face databases. The results show that, compared with other face recognition methods, the proposed method improves the recognition accuracy, and can meet the real-time requirements of face recognition.

Key words: face recognition, Gabor features, Local Binary Pattern(LBP) features, kernel canonical correlation analysis