计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (23): 125-130.
钟意伟,赵杰煜,朱绍军
ZHONG Yiwei, ZHAO Jieyu, ZHU Shaojun
摘要: 特征选择是高维数据降维的一种关键技术。传统数据降维技术如PCA,只是转化数据的表达形式,不能表达数据的相关程度。近年来提出信息度量方法,使用评价函数表示数据的不确定性程度,虽然能较好地体现数据之间的相关程度,但并没有充分考虑选取的特征对整个样本空间的影响。针对传统方法的不足,提出一种基于贝叶斯和谐度特征选择算法。贝叶斯和谐度来自贝叶斯阴阳和谐学习理论,可以估计整个数据空间的联合概率分布,选取的特征能够较好地反应整个样本空间的变化。根据和谐度的变化来度量类之间的相似度从而得到冗余度较低的特征组合。与传统方法如ReliefF、FCBF等比较后发现,在取同样特征个数的情况下,和谐度度量得到的特征组合对数据分类更有效。