计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (21): 1-5.
李 光,惠 萌
LI Guang, XI Meng
摘要: 针对现有的基于非负矩阵分解的隐私保护数据挖掘方法中,不区分样本的重要性的不同,对所有样本都进行同样强度扰动的问题进行改进。提出了一种结合样本选择的基于非负矩阵分解的隐私保护分类方法。该方法使用样本选择将原始样本区分为重要的和不重要的两类。在对数据进行扰动时,使用现有的基于非负矩阵分解的方法对所有样本进行扰动。随后利用非负矩阵分解的聚类性质,对不重要的样本进行附加扰动。实验表明,该方法在保持数据可用性的同时,可以对隐私信息提供更好的保护。