计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (2): 209-212.

• 信号处理 • 上一篇    下一篇

FSS-kernel与FastICA融合的盲源分离算法研究

汪道德1,何鹏举1,龙莉莉2   

  1. 1.西北工业大学 自动化学院,西安 710129
    2.湖南科技学院,湖南 永州 425000
  • 出版日期:2015-01-15 发布日期:2015-01-12

Novel blind source separation method based on FSS-kernel and FastICA combination

WANG Daode1, HE Pengju1, LONG Lili2   

  1. 1.School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
    2.Hunan University of Science and Engineering, Yongzhou, Hunan 425000, China
  • Online:2015-01-15 Published:2015-01-12

摘要: FastICA算法有着比传统ICA算法更快、更稳健的收敛速度,但由于其选用的非线性函数不能很好地符合源信号的统计特性,恢复结果并不理想。针对该问题,提出了一种有限支持样本核函数(FSS-kernel)与FastICA融合的盲源分离算法。该方法是通过FSS-kernel算法估计得出源信号概率密度函数,结合FastICA算法,实现混合信号的盲分离。仿真结果表明,该方法能够有效地完成混叠信号的分离,通过与传统ICA算法及FastICA算法比较,证明了该方法具有更高的分离精度和自适应能力。

关键词: 快速独立分量分析(FastICA)算法, 有限支持样本核函数(FSS-kernel)算法, 盲源分离, 算法融合

Abstract: FastICA algorithm has a faster and more robust convergence speed than the traditional ICA algorithm. But its recovery results are not satisfied. Because the specified non-linear function is not well in line with the statistical properties of the source signal. In order to solve the problem, a novel blind source separation method based on FSS-kernel and FastICA combination is proposed in this paper. Probability density function of the source signal is estimated by the FSS-kernel algorithm, and then, to restore the blind separation of mixed signals, FastICA algorithm is used, the negative entropy is the objective function. The simulation results show that the signal aliasing could be separated effectively by this method. It is proved that the method has higher separation accuracy and adaptive capacity, by contrasting with the traditional ICA algorithms and FastICA algorithm.

Key words: Fast Independent Component Analysis(FastICA) algorithm, Finite Support Sample(FSS)-kernel algorithm, blind source separation, algorithm fusion