摘要: 针对云计算中多任务调度和资源分配问题,提出一种融合田口方法和差分进化算法(DEA)的改进差分进化算法(IDEA),优化云计算中多任务调度和资源分配。利用田口方法的一个正交表(OA)作为掩膜变异算子对任务进行编码,通过变异、交叉过程产生更好的后代。建立成本和时间模型,以此寻找调度方案的帕累托最优解。仿真具有5个任务和5个资源的云平台环境,以平均交叉率、分布距离、最大宽度和高维空间比率作为性能指标,将IDEA算法与DEA、NSGA-II等现有算法进行比较。实验结果表明,IDEA算法在寻找任务调度和资源分配的帕累托最优解上优于NSGA-II和DEA等算法。此外,对于不同的完工时间和任务调度成本的目标,分别列出了提出算法所寻找到的最优调度方案,能够为决策者提供很大帮助。