计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (2): 11-15.

• 博士论坛 • 上一篇    下一篇

基于标签共现网络的用户聚合算法研究

王  珉,王永滨   

  1. 中国传媒大学 计算机学院,北京 100024
  • 出版日期:2015-01-15 发布日期:2015-01-12

User aggregation algorithm research based on social tags co-occurrence net

WANG Min, WANG Yongbin   

  1. School of Computer, Communication University of China, Beijing 100024, China
  • Online:2015-01-15 Published:2015-01-12

摘要: 目前,聚合服务包含网络资源聚合、服务聚合与用户聚合三个方面,其中用户聚合研究亟待完善。在一些开放平台的社会化标签系统中,用户根据个人偏好自由选择词汇对网络资源进行标注。标注的标签词反映了用户的兴趣偏好。从标签共现网络视角,提出了一种基于标签共现网络的用户聚合算法TBKM。定义了TBKM算法的相关概念;创新提出了TBKM算法并给出了算法的详细设计;选择目前网络上最大的书签类站点Delicious的真实数据进行实证研究,将TBKM算法与传统K-means算法在聚类效果上进行比较,展示了TBKM算法在簇间距离与簇内半径两指标上的创新性。

关键词: 社会标签, 聚类, 用户聚合, K-means

Abstract: Aggregation services include resource aggregation, service aggregation and user aggregation, whereas only few researches focus on user aggregation. In some open platform systems of social tagging, user can tag resource with freely chose vocabulary in terms of their own need. The words in tags reflect user’s preference. This paper proposes a user clustering algorithm named TBKM from the perspective of social tags co-occurrence net. The paper is organized as follows. It defines some concepts with regard to TBKM. It elaborates on the novel algorithm TBKM. An experiment on real data from a book tag website named Delicious shows the difference in effectiveness between TBKM and original K-means.

Key words: social tag, cluster, user aggregation, K-means