计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (19): 93-97.
黄 芳1,刘元君1,陈 波2
HUANG Fang1, LIU Yuanjun1, CHEN Bo2
摘要: 针对网络流量的非线性和时变性等特点,为了提高网络流量预测精度,提出一种组合核函数高斯过程的网络流量预测模型。用自相关法和假近邻法计算网络流量的延迟时间和嵌入维数,构建网络流量学习样本;采用组合核函数高斯过程对训练集进行学习,并且参数通过遗传算法进行优化;最后采用网络流量数据对模型性能测试。仿真表明,相对于对比模型,组合核函数高斯模型获得了更高的预测精度,预测结果更加稳定、可靠,具有较大的实际应用价值。