计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (18): 62-68.
朱文超,许德章
ZHU Wenchao, XU Dezhang
摘要: 为减小噪声信号对六维力传感器测量精度的影响,同时解决因主振型信息缺失导致扩展Kalman滤波器难以获得最优系统估计的问题,提出一种基于小生境野草算法优化的扩展卡尔曼滤波(NIWO-EKF)算法。算法根据正弦激励力响应与应变之间的关系,构建六维力传感器下E型膜非线性系统模型。将系统干扰矩阵与控制矩阵视为一个整体,引入野草繁殖思想,以前6阶主振型信息构成的综合矩阵为均值,进行高斯采样,产生初始化的可行解。将小生境技术与野草算法相融合,利用野草算法进行全局搜索,根据适应度的大小对个体进行降序排列,按照小生境容量划分出多个种群协同合作,避免搜索过程陷入局部最优,提高算法的寻优精度和收敛速度。采用改进野草算法对EKF中的系统干扰控制矩阵进行优化处理。仿真实例表明,优化后的扩展卡尔曼滤波器能有效地提高六维力传感器的测量精度,具有很好的鲁棒性和稳定性。