计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (17): 20-27.
• 博士论坛 • 上一篇 下一篇
余 鹰
出版日期:
发布日期:
YU Ying
Online:
Published:
摘要: 多标记学习考虑一个对象与多个类别标记相关联的情况,是当前国际机器学习领域研究的热点问题之一。多标记学习的研究主要围绕降低特征空间和标记空间的复杂性,提高多标记学习算法的精度而展开。针对这一特点,从多标记分类、标记排序、多标记维度约简和标记相关性分析四个方面,对多标记学习的研究进展进行了归纳与阐述,分析了当前多标记学习存在的问题。最后指出了目前多标记学习若干发展方向,为该领域的进一步研究提供参考。
关键词: 多标记学习, 分类, 标记相关性, 维度约简
Abstract: Multi-label learning, which considers the case of an object related to multiple labels, attracts much attention in recent years. Multi-label learning research aims to improve the performance of multi-label learning algorithms by reducing the complexity of the feature space and the label space. This paper systematically analyses the developments in multi-label learning research from four aspects including multi-label classification, label ranking, multi-label dimension reduction and label correlation and also points out the existing problems in the multi-label learning research. Finally, it summarizes several valuable research directions, which provides reference for the further research in this field.
Key words: multi-label learning, classification, label correlation, dimension reduction
余 鹰. 多标记学习研究综述[J]. 计算机工程与应用, 2015, 51(17): 20-27.
YU Ying. Survey on multi-label learning[J]. Computer Engineering and Applications, 2015, 51(17): 20-27.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2015/V51/I17/20