计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (15): 56-61.

• 理论研究、研发设计 • 上一篇    下一篇

多智能体布谷鸟算法的网络计划资源均衡优化

宋玉坚1,叶春明1,黄佐钘1,2   

  1. 1.上海理工大学 管理学院,上海 200093
    2.上海期货交易所,上海 200122
  • 出版日期:2015-08-01 发布日期:2015-08-14

Multi-agent cuckoo search algorithm for resource leveling problem of network planning

SONG Yujian1, YE Chunming1, HUANG Zuoxing1,2   

  1. 1.Bussiness School, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Shanghai Futures Exchange, Shanghai 200122, China
  • Online:2015-08-01 Published:2015-08-14

摘要: 网络计划资源均衡属于组合优化问题,为了能快速有效地求解此类问题,提出了一种多智能体布谷鸟算法。针对标准布谷鸟算法缺乏信息共享的缺陷,将多智能体系统引入布谷鸟算法中。多智能体的邻域竞争合作算子实现智能体间信息的交流,加快算法收敛速度;变异算子扩大搜索范围增加种群多样性;自学习算子提高局部寻优的能力;布谷鸟算法的Levy飞行进化机制能有效地跳出局部最优实现全局收敛。实例仿真结果证实了,与其他算法相比多智能体布谷鸟算法能更有效地求解网络计划资源均衡优化问题。

关键词: 资源均衡, 多智能体布谷鸟算法, 竞争合作算子, 变异算子, 自学习算子, Levy进化机制

Abstract: Resource leveling problem of network planning is a combinatorial optimization problem. For the purpose of solving it efficiently and effectively, this paper proposes a multi-agent cuckoo search algorithm. The multi-agent system is embedded to basic cuckoo search algorithm to counteract the lack of information exchange. The competition & cooperation operation enhances agents’ communication and boosts convergence speed. Mutation operation can search widely and maintain the diversity of the population. Self-study operation can exploit high quality solutions. Meanwhile, the Levy flight evolution mechanism can avoid trapping to local optima. The case study also indicates that the modified algorithm can solve the resource leveling problems more efficiently and effectively when compared with other algorithms.

Key words: resource leveling problem, multi-agent cuckoo search algorithm, competition &, cooperation operation, mutation operation, self-study operation, Levy flight evolution mechanism