计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (14): 51-56.

• 理论研究、研发设计 • 上一篇    下一篇

基于格值一阶逻辑[LF(X)]的多元[α]-归结原理的注记

刘  熠1,2,徐  扬2,贾海瑞2   

  1. 1.内江师范学院 数学与信息科学学院,四川 内江 641112
    2.西南交通大学 智能控制开发中心,成都 610031
  • 出版日期:2015-07-15 发布日期:2015-08-03

 Notes on multi-ary [α]-resolution principle based on lattice-valued logical system [LF(X)]

LIU Yi1,2, XU Yang2, JIA Hairui2   

  1. 1.School of Mathematics and Information Sciences, Neijiang Normal University, Neijiang, Sichuan 641112, China
    2.Intelligent Control Development Center, Southwest Jiaotong University, Chengdu 610031, China
  • Online:2015-07-15 Published:2015-08-03

摘要: 进一步深入研究了基于格蕴涵代数的格值一阶逻辑系统[LF(X)]的多元[α]-归结原理的基本理论,给出了在基于[LF(X)]的多元[α]-归结演绎中参与多元[α]-归结的广义文字个数随着归结演绎的推进而动态变化的基本原则。对基于[LF(X)]的多元[α]-归结原理的有效性进行了一定分析;这为建立基于[LF(X)]的多元[α]-归结方法以及构造多元[α]-归结算法建立了理论基础。

关键词: 格蕴涵代数, 格值一阶逻辑, 多元[&alpha, ]-归结原理

Abstract: The relative theory of multi-ary [α]-resolution principle based on lattice-valued first-order logical system [LF(X)] is further investigated, the basic principle of the number of generalized literals which take part in the multi-ary [α]-resolution varies with the resolution deduction in [LF(X)]. The validities of multi-ary [α]-resolution principle in [LF(X)] are analyzed, which will lay the theoretical foundation for the multi-ary [α]-semantic resolution method in [LF(X)].

Key words: lattice implication algebras, lattice-valued first-order logic, multi-ary [α]-resolution principle