计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (14): 242-246.

• 工程与应用 • 上一篇    下一篇

改进PSO算法的BP网络对泵控马达系统的优化

杨  统,王  崴,刘晓卫   

  1. 空军工程大学 防空反导学院,西安 710051
  • 出版日期:2015-07-15 发布日期:2015-08-03

Optimization of pump controlled motor system of BP network based on improved PSO algorithm

YANG Tong, WANG Wei, LIU Xiaowei   

  1. Institute of Missile, Air Force Engineering University, Xi’an 710051, China
  • Online:2015-07-15 Published:2015-08-03

摘要: 针对如何有效改善BP网络易陷于局部极小和收敛速度慢的缺点,提出了一种带有变异灰色算子的多群体协同混沌粒子群算法(GMMCCPSO)。将灰色变异算子应用于多群体协同粒子群的主群,以避免主群过早出现局部收敛现象;将混沌理论引入各从群,以增强各从群的局部搜索能力。利用改进的粒子群算法来优化BP神经网络的权值和阈值,有效地改善了BP网络易陷入局部极小和收敛慢的缺点,同时也极大地提高了其映射能力。通过对泵控马达系统进行MATLAB仿真研究,结果表明:改进的PSO-BP网络有效地改善了该系统存在对突加负载的识别能力、系统振荡性和响应速度差的缺点。

关键词: 反向传播(BP)神经网络, 变异灰色算子, 多群体协同, 混沌理论, 泵控马达系统

Abstract: Aiming at how to improve BP network disadvantages that is easy to fall into local minimum and slow convergence, a multi group with variation of grey operator Collaborative Chaotic Particle Swarm Optimization algorithm (GMMCCPSO) is proposed. The gray mutation operator is applied to multi-group cooperative particle swarm main group  in order to avoid the phenomenon that is premature local convergence of the main group. In order to enhance the capacity of local search from group, the chaos theory is introduced from each group. Using improved particle swarm optimization algorithm to optimize BP neural network weights and thresholds, the shortcoming of the BP network that is easy to fall into local minima and slow convergence of shortcomings is effectively improved, and it also greatly improves its mapping capabilities. By the study of controlling the pump motor system simulation of MATLAB, the results show that the improved PSO-BP network effectively improves the shortcomings of the system about the ability to identify the presence of sudden load, the oscillation and the response speed being poor of the system.

Key words: Back Propagation(BP) neural network, mutation gray operator, multi-group collaboration, chaos theory, pump controlled motor system