计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (12): 198-202.

• 图形图像处理 • 上一篇    下一篇

一种基于预测的实时人脸特征点定位跟踪算法

翁政魁1,王  彬1,王  坤2,刘  辉1   

  1. 1.昆明理工大学 信息工程与自动化学院,昆明 650500
    2.华中科技大学 自动化学院,武汉 430074
  • 出版日期:2015-06-15 发布日期:2015-06-30

Real-time facial feature point location and tracking algorithm based on prediction mechanism

WENG Zhengkui1, WANG Bin1, WANG Kun2, LIU Hui1   

  1. 1.Faculty of Information Engineering & Automation, Kunming University of Science and Technology, Kunming 650500, China
    2.School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
  • Online:2015-06-15 Published:2015-06-30

摘要: 当前的人脸特征点定位跟踪方法因其计算量大,实时特性欠佳。给出了一种基于改进Viola-Jones算法和Kalman滤波器预测机制的定位及跟踪算法。该算法通过使用改进的Viola-Jones算法对本次人脸特征点进行定位,同时使用Kalman滤波算法对特征点下次出现位置进行预测,缩小了下一帧特征点定位过程中特征点的搜索范围,因而缩短了定位搜索时间。实验结果表明该方法在保证定位准确性和鲁棒性的同时明显增强了算法的实时性。

关键词: 人脸特征点识别, 特征点跟踪, 预测机制, Kalman滤波器

Abstract: The current research of location and tracking methods for facial feature point are poor in real-time performance because they are large in computing capacity. In this paper, an improved method based on Viola-Jones algorithm with Kalman filter prediction mechanism is presented. The current facial feature point is located by using Viola-Jones algorithm and the scope where the next feature point will appear is predicted by Kalman filter algorithm. As a result, the scope of the feature point in next frame is reduced and the locating time is shortened. Experiments show with this method the real-time performance of facial feature point location and tracking algorithm can be improved apparently while ensuring the accuracy and robustness.

Key words: facial feature point recognition, feature point tracking, prediction mechanism, Kalman filter