摘要: 多数分类识别算法需要大量的已标注样本对分类模型进行训练。实际应用中,对大量样本进行标注枯燥耗时且代价昂贵,因此能够获得的已标注样本数量非常有限。将基于不确定性样本的主动学习和代表性样本的自学习方法引入到基于支持向量数据描述的分类模型中,提出了一种新的分类识别方法。通过主动学习去挖掘那些对当前分类模型最有价值的样本进行人工标注,并借助自学习方法进一步利用样本集中大量的未标注样本,使得在花费较小的标注代价下,能够获得良好的分类性能。在潜艇机械噪声源识别问题上的实验结果验证了该方法能有效降低样本标注代价。