计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (9): 231-236.

• 工程与应用 • 上一篇    下一篇

需求随机依赖库存环境下的订货仿真优化模型

欧  剑,闵  杰   

  1. 安徽建筑大学 数理系,合肥 230601
  • 出版日期:2014-05-01 发布日期:2014-05-14

Simulation and optimization of lot-sizing model with stochastic stock-dependent demand

OU Jian, MIN Jie   

  1. Department of Mathematics & Physics, Anhui Jianzhu University, Hefei 230601, China
  • Online:2014-05-01 Published:2014-05-14

摘要: 需求的随机性和依赖库存性是库存问题的特点之一,在需求以泊松分布的形式随机依赖库存的条件下讨论了(Q,T)型库存控制问题。为了评估库存控制策略的平均盈利水平,建立了该库存问题的离散事件系统仿真模型,设计了一种基于仿真的种群重叠、遗传操作非重叠的进化算法,用以优化库存控制策略,类似设计了基于仿真的模拟退火和粒子群优化算法进行比较。通过实例分析了不同参数的变化对模型最优解的影响,灵敏度分析表明需求依赖库存效应越明显时,利润水平越高,最优订货策略越倾向于高库存、短周期和现货销售。仿真实例说明了基于仿真的优化算法的可行性、有效性。

关键词: 库存控制, 需求随机依赖库存, 基于仿真的进化计算, 粒子群优化, 模拟退火

Abstract: Stochastic demand and inventory-dependent demand are the characters of inventory control problems. By assuming that the demand of items obeys Poisson distribution, the (Q,T) inventory control model is discussed on condition of stock-
dependent demand. A discrete event system simulation model of this inventory system is built to evaluate the average profit of this inventory control policy, and an improved simulation-based evolutionary algorithm with overlapping population and non-overlap genetic operators is designed to optimize the inventory control policy. Similarly, a simulation-based simulated annealing method and a simulation-based Particle Swarm Optimization method are designed and compared. The sensitive analyses of parameters show that the larger this dependency of demand on stocks the higher the profits level, and the optimal ordering policy should be higher-stock, shorter-cycle and stock sales. The simulation example shows that the simulation-based optimization algorithm is feasible and effective.

Key words: inventory control, stochastic stock-dependent demand, simulation-based evolutionary algorithm, Particle Swarm Optimization(PSO), simulated annealing