计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (9): 214-218.
侯传宇1,吴小培2
HOU Chuanyu1, WU Xiaopei2
摘要: 在语音识别特征提取过程中,为克服传统自相关法在计算特征参数时实时性较差的缺点,提出一种用于提取频率规整线性预测系数(WLPC)的自适应最小均方误差(LMS)算法。该方法通过自适应LMS技术,不仅能提取出符合人耳的听觉特性的特征参数,而且实现了对WLPC系数的实时提取。实验采用DTW(动态时间规整)算法,对比了自相关法WLPC预测误差和自适应法WLPC两种特征参数对孤立词识别率的影响结果和预测误差,结果证明了采用该算法具有较高的分类准确率和良好的时间性能。