计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (8): 53-56.

• 理论研究、研发设计 • 上一篇    下一篇

基于空间网格划分的多目标进化算法

李  雯,李和成   

  1. 青海师范大学 数学系,西宁 810008
  • 出版日期:2014-04-15 发布日期:2014-05-30

Multi-objective evolutionary algorithm based on space-gridding scheme

LI Wen, LI Hecheng   

  1. Department of Mathematics, Qinghai Normal University, Xining 810008, China
  • Online:2014-04-15 Published:2014-05-30

摘要: 为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。

关键词: 多目标优化问题, 进化算法, Pareto最优解, 空间网格划分

Abstract: In order to solve the multi-objective optimization problem effectively and find a set of Pareto solutions with uniform distribution and wide range, this paper proposes an evolutionary algorithm based on a space-gridding search technique. The decision space is divided into grids, and a large number of dominant individuals are deleted by using the location of the grids. In the crossover operator, the information of optimal individuals for each objective function is used to increase the range of Pareto front. A new designed method based on maximum distance sorting is applied to delete the unwanted individuals in non-dominant solution sets. Numerical experiments show that the proposed algorithm is feasible and efficient.

Key words: multi-objective optimization problem, evolutionary algorithms, Pareto optimal solutions, space-gridding