计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (8): 35-39.
谭 乾1,江 弋1,林 凡2
TAN Qian1, JIANG Yi1, LIN Fan2
摘要: 通过对Swift云存储中Proxy Node的负载因素研究,提出结合层次分析法(AHP)和混合递阶遗传训练的RBF神经网络实现对Swift云存储负载情况的预测,其中使用AHP构造对云存储系统的负载层次化模式,提高负载预测的综合精度,设计了RBF神经网络预测模型,用混合递阶遗传算法(HHGA)确定RBF神经网络的参数和结构。仿真实验结果表明,对Swift云存储负载的预测具有可行性,能为系统动态负载均衡决策提供依据。