计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (8): 103-107.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

基于GM-QPSO算法的数据库查询优化

罗  鹏   

  1. 1.贵州省六盘水盘县职业技术学校,贵州 六盘水 553536
    2.贵州大学 计算机科学与信息学院,贵阳 477004
  • 出版日期:2014-04-15 发布日期:2014-05-30

Database query optimization based on GM-QPSO algorithm

LUO Peng   

  1. 1.Liupanshui College of Technology, Liupanshui, Guizhou 553536, China
    2.College of Computer Science & Information, Guizhou University, Guiyang 477004, China
  • Online:2014-04-15 Published:2014-05-30

摘要: 针对量子粒子群算法解决数据库查询优化问题存在缺陷,提出一种高斯变异量子粒子群算法的数据库查询优化方法(GM-QPSO)。首先将遗传算法的变异算子引进量子粒子群优化算法,使得粒子在近似最优解附近变动提高全局搜索能力,然后将其应用于数据库查询优化问题求解,最后通过仿真实验对GM-QPSO的性能进行测试。结果表明,GM-QPSO加快了数据库查询优化求解的收敛速度,获得了质量更高的查询优化方案。

关键词: 数据库, 查询优化, 粒子群优化算法, 量子行为, 高斯变异

Abstract: Aiming at traditional quantum particle swarm algorithm in solving the database query optimization problems has slow convergence speed and premature convergence, a novel query optimization method of database based on Gauss Mutation Quantum behaved Particle Swarm Optimization algorithm(GM-QPSO). Firstly, the mutation operator of the genetic algorithm is introduced into quantum particle swarm optimization algorithm to improve the global search ability, the particle position changes in a small range of the approximate optimal solution, and then it is applied to solve the query optimization problem of database, and the performance of GM-PSO is tested by simulation experiments. The results show that, GM-QPSO accelerates the convergence speed of database query optimization and can obtain higher quality query optimization scheme.

Key words: database, optimization query, particle swarm optimization algorithm, quantum behaved, Gauss mutation