计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (7): 62-66.

• 理论研究、研发设计 • 上一篇    下一篇

一种高效的混合蝙蝠算法

尹进田1,刘云连2,3,刘  丽1,伍铁斌2   

  1. 1.邵阳学院 电气工程系,湖南 邵阳 422000
    2.湖南人文科技学院 机电工程系,湖南 娄底 417000
    3.湖南科技大学 信息与电气工程学院,湖南 湘潭 411201
  • 出版日期:2014-04-01 发布日期:2014-04-25

Efficient hybrid bat algorithm

YIN Jintian1, LIU Yunlian2,3, LIU Li1, WU Tiebin2   

  1. 1.Department of Electrical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
    2.Department of Electrical and Mechanical Engineering, Hunan Institute of Humanities Science and Technology, Loudi, Hunan 417000, China
    3.School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Online:2014-04-01 Published:2014-04-25

摘要: 针对基本蝙蝠算法存在收敛速度慢,易陷入局部最优,求解精度低等缺陷,提出一种融合局部搜索的混合蝙蝠算法用于求解无约束优化问题。该算法利用混沌序列对蝙蝠的位置和速度进行初始化,为全局搜索的多样性奠定基础;融合Powell搜索以增强算法的局部搜索能力,加快收敛速度;使用变异策略在一定程度上避免算法陷入局部最优。选取几个标准测试函数进行仿真实验,结果表明:与基本蝙蝠算法和粒子群优化算法相比,混合蝙蝠算法具有更好的寻优性能。

关键词: 蝙蝠算法, 混沌, Powell搜索方法, 变异, 粒子群优化

Abstract: The Bat Algorithm(BA) has a few disadvantages in the global searching, including slow convergence speed, high possibility of being trapped in local optimum and low solving precision. A hybrid bat algorithm based on Powell search method is proposed to solve unconstrained optimization problems. Firstly, chaotic sequence is used to initiate individual position and velocity, which strengthens the diversity of global searching. It combines the bat algorithm and Powell search to enhance the ability of local search and improve the convergence speed of algorithm. Mutation strategy is used to prevent the algorithm into a local optimum in a certain extent. The experimental results show that the proposed algorithm is more effective and feasible than the standard BA and Particle Swarm Optimization(PSO) algorithm.

Key words: Bat Algorithm(BA), chaotic, Powell search method, hybrid, Particle Swarm Optimization(PSO)