计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (6): 64-67.
张显江1,刘小强2
ZHANG Xianjiang1, LIU Xiaoqiang2
摘要: 为了提高网络流量预测精度,利用相空间重构和神经网络参数间的相互联系,提出一种参数联合优化的网络流量非线性预测模型。将相空间重构和预测模型参数作为粒子群优化算法的粒子,网络流量预测精度作为粒子适应度函数,通过粒子之间相互协作获得全局最优参数,根据最优参数建立最优网络流量非线性预测模型,通过网络流量实例对模型性能进行测试。结果表明,相对于传统参数优化方法,参数联合优化方法大幅度提高了网络流量的预测精度,为非线性预测问题提供了一种新的研究思路。