计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (4): 196-199.

• 图形图像处理 • 上一篇    下一篇

光照变化条件下的人脸识别技术研究

袁  琳1,陈  暄1,龙  丹2   

  1. 1.浙江工业职业技术学院,浙江 绍兴 312008
    2.浙江大学,杭州 310058
  • 出版日期:2014-02-15 发布日期:2014-02-14

Research on face recognition under illumination variations

YUAN Lin1, CHEN Xuan1, LONG Dan2   

  1. 1.Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312008, China
    2.Zhejiang University, Hangzhou 310058, China
  • Online:2014-02-15 Published:2014-02-14

摘要: 为了提高光照变化条件下的人脸识别率,针对Retinex算法处理人脸光照图像时易产生“光晕”难题,提出了一种基于Mean-Shift滤波的Retinex算法,并应用于人脸识别中的光照预处理。对人脸图像进行非线性增强;利用Mean-Shift滤波代替高斯滤波对光照估计,解决传统Retinex算法中存在的“光晕”难题。采用Yale B人脸库对算法性能进行测试,结果表明,该算法能够很好地抑制“光晕”现象的发生,具有光照鲁棒性,提高了人脸的识别率。

关键词: 光照预处理, 人脸识别, Retinex算法, Mean-Shift滤波

Abstract: In order to improve the face recognition rate under illumination variations, this paper proposes an improved retinex algorithm which Gauss filter is replaced by mean-shift filter to solve “halo” phenomenon in traditional retinex algorithm for face illumination image. The face image is enhanced by nonlinear method, and then mean-shift filter is used to estimate the illumination instead of gauss filter to solve the traditional retinex algorithm’s “halo” phenomenon problem. The algorithm’s performance is test by Yale B face database, the results show that the proposed algorithm can restrain the “halo” phenomenon and has illumination robustness to improve the face recognition rate.

Key words: illumination preprocessing, face recognition, Retinex algorithm, Mean-Shift filtering