计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (23): 7-9.
彭 珍1,彭 洁1,赵 伟1,杨炳儒2
PENG Zhen1, PENG Jie1, ZHAO Wei1, YANG Bingru2
摘要: 如何获取粗粒度级信息是信息管理与信息系统中的研究热点之一。提出一种基于模糊认知图(Fuzzy Cognitive Map,FCM)与信息融合集成挖掘的面向多样例粗粒度信息获取方法,FCM可以建立多细粒度概念与粗粒度概念之间的模糊认知关系,信息融合则用于构建粗粒度级概念的信息表达,NHL(Nonlinear Hebbian Learning)实现了基于数据源的自动学习,从而可以计算出粗粒度级概念的信息值,该方法在Fisher’s Iris公开数据集上分析并验证了有效性,并将此应用于基于科技文献大数据的科技人才评价发现中。